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2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to,
even comparable to, the computer’s limit. In direct methods of solution, roundo
errors accumulate, and they are magnified to the extent that your matrix is clos
to singular. You can easily lose two or three significant figures for matrices which

(you thought) werdar from singular.

If this happens to you, there is a neat trick to restore the full machine precision
callediterative improvement of the solution. The theory is very straightforward (see

Figure 2.5.1): Suppose that a veckds the exact solution of the linear set
A-x=Dhb (25.]

You don't, however, know. You only know some slightly wrong solution+ 4,
wherejx is the unknown error. When multiplied by the mattixyour slightly wrong
solution gives a product slightly discrepant from the desired right-hantsidemely

A-(X+6x)=b+0db (25.2

Subtracting (2.5.1) from (2.5.2) gives
A-éx=4b (2.5.3
But (2.5.2) can also be solved, trivially, féb. Substituting this into (2.5.3) gives
A-Xx=A-(Xx+x)—b (2.5.9

In this equation, the whole right-hand side is known, siRce éx is the wrong

solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtractitn of

Then, we need only solve (2.5.4) for the erday then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solutior. by
decomposition. In this case we already havelthedecomposed form ok, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:

(Ajuo e:)uaLu@u
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Figure 2.5.1. Iterative improvement of the solution to A - x = b. Thefirst guess x + dx is multiplied by
A to produce b + éb. The known vector b is subtracted, giving éb. The linear set with this right-hand
side isinverted, giving x. Thisis subtracted from the first guess giving an improved solution x.

SUBROUTINE mprove(a,alud,n,np,indx,b,x)

INTEGER n,np,indx(n),NMAX

REAL a(np,np),alud(np,np),b(n),x(n)

PARAMETER (NMAX=500) Maximum anticipated value of n.

USES | ubksb
Improves a solution vector x(1:n) of the linear set of equations A - X = B. The matrix
a(l:n,1:n), and the vectors b(1:n) and x(1:n) are input, as is the dimension n. Also
input is alud, the LU decomposition of a as returned by 1ludcmp, and the vector indx also
returned by that routine. On output, only x(1:n) is modified, to an improved set of values.

INTEGER i, j

REAL r(NMAX)

DOUBLE PRECISION sdp

do12 i=1,n Calculate the right-hand side, accumulating the resid-
sdp=-b(i) ual in double precision.
dou j=1,n

sdp=sdp+dble(a(i,j))*dble(x(j))

enddo 11
r(i)=sdp

enddo 12

call lubksb(alud,n,np,indx,r) Solve for the error term,

do13 i=1,n and subtract it from the old solution.
x(1)=x(i)-r (1)

enddo 13

return

END

You should note that the routine 1udcmp in §2.3 destroys the input matrix as
it LU decomposesit. Since iterative improvement requires both the original matrix
and its LU decomposition, youwill need to copy A before calling ludcmp. Likewise
lubksb destroys b in obtaining X, so make a copy of b also. If you don't mind
this extra storage, iterative improvement is highly recommended: It is a process
of order only N2 operations (multiply vector by matrix, and backsubstitute — see
discussion following equation 2.3.7); it never hurts; and it can really give you your
money’s worth if it saves an otherwise ruined solution on which you have already
spent of order N3 operations.
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2.5 Iterative Improvement of a Solution to Linear Equations 49

You can call mprove several timesin succession if you want. Unless you are
starting quite far from the true solution, one call is generally enough; but a second
call to verify convergence can be reassuring.

More on lIterative Improvement

It isilluminating (and will be useful later in the book) to give a somewhat more solid
analytical foundation for equation (2.5.4), and also to give some additional results. Implicitin
the previous discussion was the notion that the solution vector x + dx has an error term; but
we neglected the fact that the LU decomposition of A isitself not exact.

A different analytical approach starts with some matrix By that is assumed to be an
approximate inverse of the matrix A, so that By - A is approximately the identity matrix 1.
Define the residual matrix R of By as

R=1-Bo-A (25.5)
which is supposed to be “small” (we will be more precise below). Note that therefore
Bop-A=1-R (2.5.6)

Next consider the following formal manipulation:

A=A By By)=(A""-By")-Bo=(Bo-A)""-Bo
. - (25.7)
=(1-R)""-By=(1+R+R*+R*+...)-By

We can define the nth partial sum of the last expression by
B,=(1+R+ ---+R")-Bo (2.5.8)

s0 that Boo — AL, if the limit exists.
It now is straightforward to verify that equation (2.5.8) satisfies some interesting
recurrence relations. Asregards solving A - x = b, where x and b are vectors, define

Xn =Bp b (25.9)
Then it is easy to show that
X7L+1 = Xn + BO : (b - A - Xn) (2510)

This is immediately recognizable as equation (2.5.4), with —dX = X1 — X, and with By
taking the role of A=, We see, therefore, that equation (2.5.4) does not require that the LU
decomposition of A be exact, but only that the implied residua R be small. In rough terms, if
the residual is smaller than the square root of your computer’s roundoff error, then after one
application of equation (2.5.10) (that is, going from X, = By - b to x;) thefirst neglected term,
of order R?, will be smaller than the roundoff error. Equation (2.5.10), like equation (2.5.4),
moreover, can be applied more than once, sinceit uses only By, and not any of the higher B’s.

A much more surprising recurrence which follows from equation (2.5.8) isone that more
than doubles the order n at each stage:

Boni1 =2B, —Bn-A-B, n=0,137... (25.11)

Repeated application of equation (2.5.11), from a suitable starting matrix By, converges
quadratically to the unknown inverse matrix A~ (see §9.4 for the definition of “quadrati-
caly”). Equation (2.5.11) goes by various names, including Schultz s Method and Hotelling's
Method; see Pan and Reif [1] for references. In fact, equation (2.5.11) is simply the iterative
Newton-Raphson method of root-finding (§9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involves two full matrix multiplications at each iteration. Each matrix multiplication involves
N? adds and multiplies. But we already saw in §§2.1-2.3 that direct inversion of A requires
only N® adds and N® multipliesin toto. Equation (2.5.11) is therefore practical only when
specia circumstances allow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in §13.10.
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50 Chapter 2. Solution of Linear Algebraic Equations

In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the seriesin equation (2.5.7) converge; and what is a suitable initial guess By (if,
for example, an initiadl LU decomposition is not feasible)?

We can define the norm of a matrix as the largest amplification of length that it is
able to induce on a vector,

R.-
IR|| = max RV

Vs (25.12)

If welet equation (2.5.7) act on some arbitrary right-hand side b, as one wantsamatrix inverse
to do, it is obvious that a sufficient condition for convergence is

IR| < 1 (25.13)

Pan and Reif [1] point out that a suitable initial guess for By is any sufficiently small constant
€ times the matrix transpose of A, that is,

Bo=eA” or R=1-€eA" A (2.5.14)

To see why thisis so involves concepts from Chapter 11; we give here only the briefest sketch:
AT . A is a symmetric, positive definite matrix, so it has real, positive eigenvalues. In its
diagonal representation, R takes the form

R=diag(l — e\, 1 —€Xa,..., 1 — eln) (2.5.15)

where all the \;’s are positive. Evidently any e satisfying 0 < € < 2/(max; A;) will give
IR|| < 1. Itis not difficult to show that the optimal choice for ¢, giving the most rapid
convergence for equation (2.5.11), is

€ = 2/(max A; + min \;) (2.5.16)

Rarely does one know the eigervalues of AT - A in equation (2.5.16). Pan and Reif
derive severa interesting bounds, which are computable directly from A. The following
choices guarantee the convergence of B, asn — oo,

€< 1/ E a or €< 1/(maX E laij| X max E |aij|) (25.17)
i J
gk J i

The latter expression is truly a remarkable formula, which Pan and Reif derive by noting that
the vector norm in equation (2.5.12) need not be the usual L, norm, but can instead be either
the Lo (max) norm, or the L; (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvalue statistically, by calculating s; = |A - v;|? for several unit vector v;’swith randomly
chosen directionsin N-space. The largest eigenvalue A can then be bounded by the maximum
of 2max s; and 2NVar(s;)/u(s:), where Var and p. denote the sample variance and mean,
respectively.
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2.6 Singular Value Decomposition 51

2.6 Singular Value Decomposition

Thereexists avery powerful set of techniquesfor dealing with sets of equations
or matricesthat are either singular or else numerically very closeto singular. In many
cases where Gaussian elimination and LU decomposition fail to give satisfactory
results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the” answer
that you thought you should get.

SVD isasothemethod of choicefor solving most linear | east-squares problems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SV D methodsare based on the following theorem of linear algebra, whose proof
isbeyond our scope: Any M x N matrix A whose number of rows M isgreater than
or equal to its number of columns N, can be written as the product of an M x N
column-orthogona matrix U, an N x N diagona matrix W with positive or zero
elements (the singular values), and the transpose of an NV x N orthogonal matrix V.
The various shapes of these matrices will be made clearer by the following tableau:

(2.6.1)

The matrices U and V are each orthogona in the sense that their columns are
orthonormal,

M

1<k<N
UiiUsn = 1o = 262
N
1<k<N
> VikVin = 6kn L en<N (26.3)

Jj=1
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